
Fall 2017 Project Proposal (Shuang)

General goal at the end of this quarter:
The final objective at the end of fall 2017 is to design, test and build a single motor flying robot
with sensing and controlling implemented on board.

Background / related work / references
Crazyflie [1] is an open source small quadrocopter project. From Crazyflie 2.0 technical report
[2], Crazyflie used a cascade control loop to control the system. The outer loop of crazyflie
controller controls the position of the system and the inner loop controls the attitude. Both loops
in the controller are PID controllers. The control states were readed from sensors.
Paper [3] proposed a method to control a quadrocopter losing one, two and three propellers.
The control strategy controls the quadrocopter spinning about an fixed axis with respect to the
vehicle,and the axis is tilted for translational control. Although successfully implement the
control algorithm on quadrocopter losing one and two propellers, losing three propellers case
cannot provide enough thrust to lift the quadrocopter. Therefore this case was not tested on real
quadcopters but only validated using simulation. The control states were readed from
positioning system.
Using similar control algorithm as [3], paper [4] proposed a controllable flying vehicle with a
single moving part. This system used a cascade control loop, with a outer PID controller
controlling the position and an inner LQR controller controlling reduced attitude.

Approaches for achieving the goal:
Using crazyflie as a platform, we want to remove 3 propellers and motors from the system and
modify the control algorithm to build a single motor helicopter. Through the thrust test, we found
out that under the current configuration, removing 3 propellers and motors from the system will
cause the lack of thrust force, similar as the losing 3 propellers case in paper [3]. Therefore
making changes on physical structures are also necessary. Since current propeller and motor
on crazyflie do not provide enough thrust, using larger propeller and more powerful motors will
be one solution. Also, since the system only use one motor, the battery size can be less to
reduce system’s weight. Tests will be designed and performed by Carol to determine the choice
of motor, propeller and battery.
In order to get better understanding of how to develop and test the control systems and
system-level performance of a single motor helicopter, we want to start with a building a
Crazyflie 2.0 model with four motors. Therefore, the primary goal of simulation is to build the
model with control systems so that the simulated Crazyflie 2.0 will have the same performance
as the Crazyflie 2.0 in real world.
Then, the next step is to design and simulate the control algorithm for the single motor
helicopter. The control method from paper [3] and [4] are good reference to develop the control
algorithm for a smaller helicopter. Therefore, computer simulation for this control algorithm will
be used as a guide. Modification of the algorithm and simulations will be performed along with
the design of single motor helicopter’s physical body.

For paper [3] and [4], the state estimations feeding into the controller are not come from
onboard sensors. For our goal, using onboard sensors to get state information is necessary.
Since crazyflie already have onboard sensors, getting datas from these sensors and convert to
the states we need is the next task.
The implementation of the control algorithm on Crazyflie is the last step. This task is mostly
converting the algorithm into C and adjust parameters in the controller through tests.
Individual task breakdown:
My primary role in this project is to design and implement the control algorithm on the single
rotor system and simulate the system-level performance using computer simulation tools.
Past works:
As stated previously, to have better understanding of the design process, we started building a
Crazyflie 2.0 model with four motors instead of one single motor. So far, I have built a simulation
model for Crazyflie 2.0 using Matlab Simulink and Simscape Multibody. To build this model, I
first use simple 3D solids to model Crazyflie 2.0’s battery, frame, motors and propellers. The
size, mass and inertia for each parts were assigned based on the measurement of crazyflie 2.0
and data from paper [2]. Then, all the parts were assembled by adding joints, constraints and
transforms between each solid blocks. The physical model then can be placed in a gravitational
environment and visualized through 3D animation in Simscape Multibody by creating a simulink
model. The complete 3D model is shown in Figure 1.

Figure 1 - Crazyflie 3D Model

After building the physical model, force and torque due to the rotation of propeller were added
onto the system according to the equations from paper [5].

To help future development of control systems and test system-level performance, a sensing
subsystem is added to the system to get simulation results of all 12 states of Crazyflie’s dynamic
model.
Base on this Crazyflie 2.0 model, the control algorithms proposed in paper [2] can be simulated
on the system by adding a control subsystem to the current simulink model, and the
performance of these algorithms can be test by analysis the output states from the sensing
blocks.
Quarter Tasks:
The first step is to verify that the performance of Crazyflie simulation matches the behavior of
real Crazyflie 2.0. To do this, we need to vary the rotation speed for each motor on Crazyflie,
compare the readings of states from Crazyflie client with the simulation results from simulink
sensing block.
Next, the control algorithms for Crazyflie 2.0 proposed in paper [2] can be implemented using
simulink blocks and then added onto the Crazyflie simulation. Tuning parameters will then be
done through the simulation tests. Then, the control algorithm will be transformed into C code
and applied onto crazyflie.
After the verification of system performance on Crazyflie 2.0 model, the next step is to begin to
remove propellers from Crazyflie. This process will be produced gradually by removing one
propeller at each step. We want to build models for Crazyflie with one and two motor loss and
implement the control algorithm proposed from paper [3].
After these process, the final step is to remove three propellers and implement the control
algorithm proposed from paper [4]. Since we already know the current Crazyflie configuration
cannot lift the entire system with one motor and one propeller, the structure of the single rotor
system will be modified based on the tests for motor, battery and propeller performances.

Weekly Plan:

Month Week Goals Deliverables Tasks

Oct. 1 Optimize
simulation of
Crazyflie in
Matlab Simulink.

1.Reduce the
simulation
generation time to
less than 10
minutes.

2. Ensure the
Feedback from
output states to
propeller speed
control block do
not significantly
increase the
simulation
generation time.

1. Use [7] as
guidance to
simplify model.

2. Use less
multibody library
components in the
sensing blocks.

Oct. 2 Test Crazyflie
model by simulate
Crazyflie system
behavior of hover
and roll, pitch,
yaw motions.

1. Crazyflie
system behavior
of hover can be
simulated and
control by the
change of
propeller speeds.

2. Crazyflie
simulation can be
put into roll, pitch
and yaw motions
with change of
propeller speeds.

3. The Crazyflie
simulation has
similar
performance as
quadcopter
simulation results
from [6].

1. Set the sum of
thrust equal to
gravity, and
Crazyflie can
maintain hovering
in the simulation.
Change the four
propellers’ speed
at a same time,
Crazyflie can do
ascending and
descending
motion along z
direction.

2.1 Increase the
velocity of the
fourth rotor and
decrease the
velocity of the
second rotor, see
if roll motion
observed.
2.2 Increase the
velocity of the
third rotor and
decrease the

velocity of the
first rotor, see if
pitch motion
observed.

2.3 Increase the
velocities of the
first and the third
rotors, decrease
the velocities of
the second and the
fourth rotors, see
if yaw motion can
be observed.

3. Perform task
2.1-2.3 and
generate position
and angle plots,
see if they match
the results from
paper [6].

Oct. 3 Implement four
motor control
algorithm in
Crazyflie 2.0
simulation.

1. Simulation
results matches
plots from paper
[2].

1. Follow paper
[2], build control
blocks in
simulink.

2. Run test cases
for each
individual blocks
to verify
performances.

3. Plot simulation
results for
Crazyflie system.

Oct. 4 Implement four
motor control
algorithm on
Crazyflie 2.0.

1. Generate C
code that can
successfully
compiled.

2. Successfully
upload the code
onto Crazyflie.

1. Convert
simulation block
to C code.

2. Upload and
replace control
algorithm on
crazyflie.

Nov. 1 Implement four
motor control
algorithm on
Crazyflie 2.0.

1. Crazyflie has
similar behavior
as simulated.

1. Test Crazyflie
behavior and
compare with
simulation.

Nov. 2 Simulate
system-level
performance of
Crazyflie when
losing one and
two propellers.

1. Observe one
and two motors
stop rotating in
the simulation.

1. Disable one
and two propellers
in the simulation.

Nov. 3-4 Develop and
simulate the
control algorithm
for losing one and
two propellers.

1. Simulation
results matches
results from paper
[3].

1. Follow paper
[3], build control
blocks in
simulink.

2. Run test cases
for each
individual blocks
to verify
performances.

3. Plot simulation
results for
Crazyflie system.

Dec. 1-2 Modify Crazyflie
model for one
motor case,
develop and
simulate the
control algorithm
for single motor
system.

1. Thrust from
propeller is larger
than gravity.

1. Modify the
parts in the
simulation.

Reference:
[1] https://www.bitcraze.io/crazyflie-2/
[2] Carlos Luis, Jérôme Le Ny. (2016) Design of a Trajectory Tracking Controller for a
Nanoquadcopter.
[3] Mueller, M. W., & Dandrea, R. (2014). Stability and control of a quadrocopter despite the
complete loss of one, two, or three propellers. 2014 IEEE International Conference on Robotics
and Automation (ICRA).
[4] Zhang, W., Mueller, M. W., & Dandrea, R. (2016). A controllable flying vehicle with a single
moving part. 2016 IEEE International Conference on Robotics and Automation (ICRA).

[5] Subramanian, Giri Prashanth. (2015) “Nonlinear Control Strategies for Quadrotors and
Cubesats”
[6] T Luukkonen. “Modelling and control of quadcopter”
[7] https://www.mathworks.com/help/physmod/sm/mech/ug/improving-performance.html

